Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Continuous-time Markov chains are frequently used to model the stochastic dynamics of (bio)chemical reaction networks. However, except in very special cases, they cannot be analyzed exactly. Additionally, simulation can be computationally intensive. An approach to address these challenges is to consider a more tractable diffusion approximation. Leite and Williams (Ann. Appl. Prob.29, 2019) proposed a reflected diffusion as an approximation for (bio)chemical reaction networks, which they called the constrained Langevin approximation (CLA) as it extends the usual Langevin approximation beyond the first time some chemical species becomes zero in number. Further explanation and examples of the CLA can be found in Anderson et al.( SIAM Multiscale Modeling Simul.17, 2019). In this paper, we extend the approximation of Leite and Williams to (nearly) density-dependent Markov chains, as a first step to obtaining error estimates for the CLA when the diffusion state space is one-dimensional, and we provide a bound for the error in a strong approximation. We discuss some applications for chemical reaction networks and epidemic models, and illustrate these with examples. Our method of proof is designed to generalize to higher dimensions, provided there is a Lipschitz Skorokhod map defining the reflected diffusion process. The existence of such a Lipschitz map is an open problem in dimensions more than one.more » « less
-
Abstract Continuous-time Markov chains are frequently used as stochastic models for chemical reaction networks, especially in the growing field of systems biology. A fundamental problem for these Stochastic Chemical Reaction Networks (SCRNs) is to understand the dependence of the stochastic behavior of these systems on the chemical reaction rate parameters. Towards solving this problem, in this paper we develop theoretical tools called comparison theorems that provide stochastic ordering results for SCRNs. These theorems give sufficient conditions for monotonic dependence on parameters in these network models, which allow us to obtain, under suitable conditions, information about transient and steady-state behavior. These theorems exploit structural properties of SCRNs, beyond those of general continuous-time Markov chains. Furthermore, we derive two theorems to compare stationary distributions and mean first passage times for SCRNs with different parameter values, or with the same parameters and different initial conditions. These tools are developed for SCRNs taking values in a generic (finite or countably infinite) state space and can also be applied for non-mass-action kinetics models. When propensity functions are bounded, our method of proof gives an explicit method for coupling two comparable SCRNs, which can be used to simultaneously simulate their sample paths in a comparable manner. We illustrate our results with applications to models of enzymatic kinetics and epigenetic regulation by chromatin modifications.more » « less
-
Epigenetic cell memory, the inheritance of gene expression patterns across subsequent cell divisions, is a critical property of multicellular organisms. In recent work [S. Bruno, R. J. Williams, and D. Del Vecchio, PLOS Comput. Biol., 18 (2022), pp. 1–27], a subset of the authors observed in a simulation study how the stochastic dynamics and time scale differences between establishment and erasure processes in chromatin modifications (such as histone modifications and DNA methylation) can have a critical effect on epigenetic cell memory. In this paper, we provide a mathematical framework to rigorously validate and extend beyond these computational findings. Viewing our stochastic model of a chromatin modification circuit as a singularly perturbed, finite state, continuous time Markov chain, we extend beyond existing theory in order to characterize the leading coefficients in the series expansions of stationary distributions and mean first passage times. In particular, we characterize the limiting stationary distribution in terms of a reduced Markov chain, provide an algorithm to determine the orders of the poles of mean first passage times, and determine how changing erasure rates affects system behavior. The theoretical tools developed in this paper not only allow us to set a rigorous mathematical basis for the computational findings of our prior work, highlighting the effect of chromatin modification dynamics on epigenetic cell memory, but they can also be applied to other singularly perturbed Markov chains beyond the applications in this paper, especially those associated with chemical reaction networks.more » « less
An official website of the United States government
